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It was found that the use of conventional Slater type overlap, resonance and kinetic integrals are 
not compatible with the use of Differential Overlap approximations (DOA). We propose a new set of 
basis functions, Spherical Orbitals, (SO's) that relieve some of the shortcomings generated by the 
use of DOA's. 

The general topology of the SO's is presented along with formulae to be used to solve the inherent 
integrals. 
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The use of Differential Overlap Approximations (DOA) such as the Mulliken 
[11, Wolfsberg-Helmholz [21, Pople [31 and other Neglect of Differential 
Overlap [4] have become increasingly common in the literature. These approxi- 
mations are used for the purpose of decreasing the number of integrals to be 
evaluated in MO calculations of molecules, and are essentially of the type: 

DOA--, ~) a(Ob = 1/2Sab { (O aC~a q- Ob~)b} . (1) 

That is they provide an approximation to the differential charge distribution 
~baq5 b as a function of the overlap S,b between qSa and ~b b. 

I wish to report here the results of our analysis of the geometrical implications 
of DOA and to propose a new set of basis functions that appear to be more 
appropriate to use in a general DOA context. 

Let us consider first the expressions of the nuclear attraction integrals, as 
given by Roothaan 1-5] for Slater type orbitals: 

[ a[2Sb2Sb] = NE a]3 Sb] 

[al2p,,b2p,,bl = N {[al 3Sb1 + 3 [al 3O Zbl } 

[al 2p,~b2p,~bl = N{ I-al3 Sb] -- 3/2[al 3 DXb] }. 

(2) 
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We may equally express the P~b and P~b as functions of two orthogonal p orbitals 
u and v(Suv = 0) in a system of 45 degrees rotated axis. 

i.e. P~b = ~ (U + V) 
V - (3) 

P~b = ~2 (u- v). 

If we now recalculate the nuclear attraction integrals and introduce the DOA, 
we obtain: 

[alZp~bZP~b ] = ~ {[a]uu] + 2[aluv] + [aIvv]}-DOA-~ ~ {[aluu] + [alvv]} 
(4) 

[aJ2p,~b2p,rb] = ~ {[aluu] -- 2[aluv] + [alvv]}- D~ ~ {[aluu] + [alvv]} 

and consequently: 

[a[2pr = [al2p~o2p~b] = N[a[3Sb] = [al2sb2Sb] . (5) 

In this expression, the [al3DZb] term of Eq. (2) has dissappeared and as a result, 
we see that the use of DOA, forced us to modify integrals even though differential 
overlap does not appear explicitly in their expression. This was recognized by 
Pople and coworkers [3] as the "invariance in space requirement" and usually 
accepted in most "all valence electrons" treatments [6]. A similar demonstration 
can be made for the Coulomb repulsion integrals where it can be shown that the 
introduction of DOA requires that only the spherical component be retained 
in the expression of the integrals representing them. That is, amongst all integral 
components NU such as NS, NPE, NPH, NDs etc. [5] in integrals [NU]N'U'], 
only the NS component is to be retained. 

One important aspect of the problem that seems to have been neglected in the 
literature is that concerning the possible implications of DOA on other integrals 
such as on the overlap integral itself. Thus it was found above that some 2 center 
integrals had to be modified even though apparently DOA was not involved 
specifically. It is merely the fact that they had an angular component that deter- 
mined that they had to be truncated. A similar situation actually does occur 
in the calculation of the overlap or resonance integrals where, for example, the 
difference between the {2S,12p~b) and {2sul2p~b) integrals is essentially linked 
to the angular difference between the p~ and p~ orbitals. It may therefore be 
anticipated that, as when [al2p~2p~] and [al2p~2pJ is not corrected to include the 
implications of DOA, the failure of correcting the overlap integrals themselves 
will also result in an error. This does not imply that the DOA, as applied to 
overlap integrals is not correct, but merely that it is not consistent with the use 
of DOA for the other integrals. 

As a matter of fact, a truncated integral expression such as Eq. (5) must result 
either from a truncated operator or a "modified" p function. Since the truncation 
applies only to the angular component, it must be assigned to the latter. As a 
result, self consistency can be reached only if "all" integrals were calculated 
accordingly, that is with the same basis of "modified" p functions. Actually, we 
found that the inclusion of a virtual p~ orbital in a Slater base MO calculation 
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of Li2, where DOA is strictly applied, yields a deep energy minimum and practically 
complete depopulation of the 2s orbital in favor of the 2p orbital. 

Table 1. MO and energy of Li2 calculated under various approximations 

Method Coef. of the highest occupied MO 

ls 2s 2pG 

Total energy Bonding 
(eV) energy 
Li 2 2Li c.lc. (eV) 

1. Alch. -0.1491 0.5260 0.1194 -14.8409 - -  
2. l s 2 s ]  -0.1474 0.5716 - -  -14.8306] +0.0075 
3. STO~DOA -0.1335 0.3021 0.4399 - 14.9141~- 14.8381 -0.07597 
4. SO I -0.1399 0.4726 0.2420 -14.85241 -0.0143 

exp. (-0.0441) 

This is seen in Table 1 when comparing lines 1, 2, and 3. Line one reproduces 
the results obtained from a straightforward ab initio calculation 1 of Li 2 at a 
distance of 5.05 a.u. with a basis set consisting of ls, 2s, and 2p~ Slater type orbitals 
of exponents 2.6875, 0.65, and 0.65 respectively. Lines 2 and 3 show the results 
of similar calculations in which DOA [Eq. (1)] was strictly applied. It can be seen 
that when the basis set consisted only of ls and 2s orbitals (line 2) the results 
compare very favorably to the ab initio ones, but the inclusion of the virtual 
pa orbital (line 3) very drastically perturbs the results. 

It is therefore necessary to find a solution to the problem and, after considering 
various possibilities, we found and wish to suggest "spherical orbitals" (SO) 
to be used as a base in lieu of the Slater orbitals for the calculation of two center 
integrals. These can be pictorially illustrated as below (Fig. 1). 

S tater S pherical 
(S.03 

2s �9 �9 
2p~ 

2Pzc 

2 p~, 

3d 
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| 

o 

c# �9 
%O 

Fig. 1. Correspondence between Slater and spherical orbitals 

1 The calculations were performed with the Alchemy program at the Centre de Calcul d'Orsay by 
Mrs. Lefebvre-Brion. 
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These SO's are essentially the normalized radial components of the Slater 
orbitals corrected to include the proper symmetry that would have been generated 
by the sign of the truncated angular component. 

a 5 
i.e. 2p~ (Slater) = 1 / - -  e- a'raCOSO 

V 7Z 

1 a/~- ,, f c o s 0 /  
2p~ (SO):V ~-~e- 'a llc~sOI l " 

This ensures that after proper normalization, the orthogonality between the various 
SO's is maintained. 

The normalized SO's necessary for the calculation of Resonance integrals 
then are: 

0 p G = ~ 2 ~  e -a ' r - [  

1 a/~ - a  3 _ 
lpa= V ~  e 

a r  

2pa = e - a r r  

cos0 
[cos01 ' 

Let us first recognize that, for the 2 center nuclear-attraction and Coulomb 
integrals, all the requirements made necessary by the use of DOA to maintain 
space invariance are automatically introduced. Indeed, the fact that all integrals 
involving a distribution of the u 2 kind such as in [aluu] are unaffected by the sign 
of u and therefore the condition represented by Eq. (5) is automatically fulfilled. 
Furthermore, since all the p functions of the base are orthogonal with each other, 
all integrals involving a distribution of the kind uv, which is set equal to 
�89 remain cancelled by the fact that S,v=0. Before examining the 
implications of these "space invariant" orbitals on the overlap integrals, let us 
first establish a practical way of solving integrals involving SO's. 

Due to the appearance of the module of the angular part in the denominator 
of their expression, we have not found a straightforward way of integrating those 
integrals involving two SO's on different centers. However, by changing the 
integration limits, solving by parts the radial component of the integral, and 
applying the proper sign to the resulting terms, it is possible to solve the problem. 
Let us consider the [ 2 p J 2 p j  overlap integral: 

a b 
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we may decompose the integral in three parts, Fig. 2, that can be evaluated 
(integrated) independently (see appendix). 

c(enter) r(ight) 

Fig. 2. Components in the [2p,12p~] overlap of SO's 

[(eft) 

SO that the total overlap is equal to: 

[2p~12p~b] = - l + c - r .  

In a similar fashion, one may show, in general, that 

[np~b[n'p~b] = -- l + c - -  r 

[ns ,  ln' p~b3 = l + c - -  r 

[-np,,aln' sb] = -- l + c + r 

[ns ,  ln' p~b] = 0 

and [ns ,  l n ' s b ] = E n p ~ a [ n ' p ~ b ] = l + c + r = [ n s ,  ln'Sb]siat~r where n and n' are the 
principal quantum numbers of the various orbitals. As a result, not only are the 
overlaps, but also the resonance and kinetic integrals (both functions of overlap) 
affected by this introduction of "angular invariant orbitals". In the appendix, 
we give the detailed mathematics that is necessary for the evaluation of the 
integrals. Preliminary molecular calculations, based on spherical orbitals, have 
been considered and it was found that the DOA approximation based on overlaps 
obtained from Spherical Orbitals restores a reasonable estimate of the molecular 
properties of Li2. This is seen by comparing the results of line 4 of Table 1 obtained 
with SO's to those of the previous lines. It is seen that the use of spherical orbitals 
allowed the population of the p orbital to be considerably reduced, and that the 
total energy comes now much closer to that of the ab initio calculations of line 1. 
The p orbitals are apparently still slightly overpopulated due to some other 
implications 2 of DOA but the remaining problem is certainly of lesser importance. 

Finally, it should be pointed out that the set of spherical orbitals is not suitable 
for use in ab initio techniques because, due to the absence of a node in the plane 
of asymmetry, the kinetic energy associated with a spherical p orbital is infinite. 

Their main use should thus be restricted to semi-empirical methods in which 
the kinetic integrals are not explicitely defined such as in the CNDO, INDO and 
M I N D O  methods [-6]. In these cases, overlaps calculated from spherical orbitals 
are consistent with the N D O  approximation and may provide a more appropriate 
framework for the estimation of the two center integrals by DOA. This might 
help define methods that are more appropriate to obtain good estimates of distance 
dependence between atoms and help arrange in the right order the various 
molecular orbitals with respect to the type of bond involved in the specific MO's. 

2 This is probably due to the neglect of the (nsa2p~lZb) integrals. 
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Appendix 

In prolate spheroidal coordinates, defined by 

2 = ra + rb ra - rb 1 + 2# 1 - 2# 
R /~= R c o s 0 , -  cos0 b - 

2 + #  2 - #  

where ihe integration limits for # are normally (dp)_ + ~, they become (see Fig. 2) 

for l (d#)2l/a {such that  cos0a<0) 
\ cos0b > 0]' 

1/a (such that COS0a > 0 / 
for c (d#)_ 1/z cos0 b > 0 / '  

for r (d#){/~ (such that cos0 ,>0)  
\ cos0b<0 ] ' 

The general form of the integrals to be solved is then:  

S~(n.,nb,p, t )= N ~T d2 ~,; (2 + #)"~ *(2 - #)"~ 1(22 - #2)e-P(z+Ut)d# 

where S ~ is the l, c, or r overlap component, p = 1/2(a + b)R and t = a -  b 
a + b "  

Xo, xl, are the integration limits appropriate to the x component  of the overlap. N includes the product 
of the normalisation constants N1 �9 N2 and the other constants generated by the transformation in 
spheroidal coordinates. 

These integrals have been found very difficult to solve analytically in view of the fact that upon 
integration over p, a negative power of 2, (the next integration variable) appears in the exponential�9 
In order to solve the problem we replaced e -put by its series development and thus obtained successive 
approximations. The results are fast converging since t is usually very small�9 The general expression 
for the resulting integral type 

(~pV- 1 i - 1  

I,rpo(n,m)-5~- 2 e  d2E',~. 'J 'xo# E i = l .  n , J - X d / * i s :  
t~-  *)- 

for type 1, [slper] integrals: 

Ii(n, m ) = ~ =  1 [ 2 J ( n -  m -  i ) -  (1 + ( -  1)m+i)J(n)] (lOt) i- 1 

(m + i) ( i -  1)! 

for type 2, [p~zls] integrals: 

I2( n, m ) = ~ =  1 [ -  2 ( -  1)m+iJ(n-m - i)+(1 + ( -  1)m+i)J(n)] (pt) i-a 

(re+i) ( i -  1)! 

and for type 3, [per]per] integrals: 

Ia(n, m)=~T= 1 [(1 - ( -  1)"+i). ( 2 J ( n -  rn - i ) -  J(n))] (pt) i 1 
(m + i) ( i -  1)! 

where 

J(x) = ~T 2 xe-  Pad2 

( _ p)-x - 1El ( _  p) 

( - x - l ) !  

and Ei( -p)=0.577215665 + ~~ + ln(p), (when x < 0 )  

x!e -p [ 1 l 
and J ( x ) = ~  I1 +p+�89 + pX] (when x>0) .  

U "  [ 

+e-P ~ = o  (x+2) (_p)k 
(--X-- 1)(-- X-- 2)...(-- X-- l - k )  
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The various overlap integrals then become: 

[0s 2p~] = ~ V 6 - "  [I1(2, 0) - 211 (1, 1) + 11(0, 2)] 

1 a/a3b 5 
[ ls[2pa] =~ V 22~_. [11(3, 0) - 11(2, 1)- 11(1, 2)+ I1(0, 3)3 

[lp~lls] =�88 ~ b  3. [12(2, 0)-12(0, 2)] 

[-lPcrl2s] =~ V 22~_. [12(3, 0) - 12(2, 1)- 12(1, 2)+ I2(0, 3)] 

!/a3b 5 
[-lpal2pcr] =~ V T "  [13(3, 0)-13(2, 1)-13(1, 2)+13(0, 3)] 

[2sl2pa] =28 ~ EIl( 4, 0)-211(2, 2)+11(0, 4)] 

[2pal2pa] = ~  ~ -  [I3(4, 0 ) -  213(2, 2)+ 13(0, 4)] 
11 /Z~  

[0palZPa] =~ V 6 [I3(2' 0)-213(1,1) + 13(0, 2)]. 
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